Measure zero sets with non - measurable sum

نویسندگان

  • Krzysztof Ciesielski
  • Chris Freiling
چکیده

For any C ⊆ R there is a subset A ⊆ C such that A + A has inner measure zero and outer measure the same as C + C. Also, there is a subset A of the Cantor middle third set such that A+A is Bernstein in [0, 2]. On the other hand there is a perfect set C such that C + C is an interval I and there is no subset A ⊆ C with A + A Bernstein in I.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completeness results for metrized rings and lattices

The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...

متن کامل

Measure zero sets whose algebraic sum is non - measurable

In this note we will show that for every natural number n > 0 there exists an S ⊂ [0, 1] such that its n-th algebraic sum nS = S + · · ·+ S is a nowhere dense measure zero set, but its n+1-st algebraic sum nS+S is neither measurable nor it has the Baire property. In addition, the set S will be also a Hamel base, that is, a linear base of R over Q. We use the standard notation as in [2]. Thus sy...

متن کامل

On Vector Sums of Measure Zero Sets

We consider the behaviour of measure zero subsets of a vector space under the operation of vector sum. The question whether the vector sum of such sets can be nonmeasurable is discussed in connection with the measure extension problem, and a certain generalization of the classical Sierpiński result [3] is presented. 2000 Mathematics Subject Classification: 28A05, 28D05.

متن کامل

NON-MEASURABLE SETS AND THE EQUATION fix+y)=fix)+fiy)

1. A set of S real numbers which has inner measure m*(S) different from its outer measure m*iS) is non-measurable. An extreme form, which we shall call saturated non-measurability, occurs when ra*(S)=0 but m*iSM)=miM) for every measurable set M, miM) denoting the measure of M. This is equivalent to: both S and its complement have zero inner measure. More generally, if a fixed set B of positive ...

متن کامل

The Algebraic Sum of Sets of Real Numbers with Strong Measure Zero Sets

We prove the following theorems: 1. If X has strong measure zero and if Y has strong first category, then their algebraic sum has property s0. 2. If X has Hurewicz’s covering property, then it has strong measure zero if, and only if, its algebraic sum with any first category set is a first category set. 3. If X has strong measure zero and Hurewicz’s covering property then its algebraic sum with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001